2020年CSP-J 方格取数问题详解:双向动态规划解法与路径优...
https://dajuwangluo.cn/zb_users/upload/2025/06/202506081749361276775436.jpg
一、问题背景与需求分析题目要求在一个n×m的方格矩阵中,从左上角(0,0)出发到右下角(n-1,m-1),每次可以向右、向上或向下移动,找出路径上数字之和最大的路线。核心难点:
[*]路径方向多样性(右、上、下)
[*]避免路径交叉和循环
[*]需要考虑来自不同方向的最优解
二、完整代码实现(带详细注释)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int INF = 1e9;// 定义无穷大值
int main() {
ios::sync_with_stdio(false);// 关闭同步提升IO速度
cin.tie(nullptr); // 解除cin与cout的绑定
int n, m;
cin >> n >> m;
// 读取网格数据
vector<vector<int>> grid(n, vector<int>(m));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
cin >> grid;
}
}
// 三维DP数组:dp表示从上方到达(i,j)的最大和
// dp表示从下方到达(i,j)的最大和
vector<vector<vector<long long>>> dp(n, vector<vector<long long>>(m, vector<long long>(2, -INF)));
// 初始化起点
dp = dp = grid;
// 处理第一列(只能从上到下)
for (int i = 1; i < n; ++i) {
dp = dp = dp + grid;
}
// 动态规划处理(按列处理)
for (int j = 1; j < m; ++j) {
// 从上到下处理当前列
for (int i = 0; i < n; ++i) {
if (i == 0) {// 第一行只能从左边来
dp = max(dp, dp) + grid;
} else {// 可以从左边或上方来
dp = max({dp, dp, dp}) + grid;
}
}
// 从下到上处理当前列
for (int i = n-1; i >= 0; --i) {
if (i == n-1) {// 最后一行只能从左边来
dp = max(dp, dp) + grid;
} else {// 可以从左边或下方来
dp = max({dp, dp, dp}) + grid;
}
}
}
// 输出结果(取两种方向中的最大值)
cout << max(dp, dp) << endl;
return 0;
}
三、算法核心思想解析
[*]三维DP设计:
[*]第三维/分别表示从上/从下到达该点
[*]避免路径方向冲突
[*]双向处理策略:
[*]每列先从上到下计算(考虑来自左和上的路径)
[*]再从下到上计算(考虑来自左和下的路径)
[*]边界处理:
[*]第一列只能垂直移动
[*]第一行和最后一行有特殊处理
四、复杂度分析与优化
[*]时间复杂度:O(n×m) 每个格子处理两次
[*]空间优化:可降维到O(n)只存储前一列数据
[*]实际应用:可扩展到三维路径规划问题
五、常见错误与调试技巧
[*]初始化问题:忘记初始化起点
[*]方向混淆:上下方向处理错误
[*]边界条件:行列边界处理不当
[*]调试建议:打印每步DP值验证
来源:2020年CSP-J 方格取数问题详解:双向动态规划解法与路径优化策略
页:
[1]